PSR500

Inspection of worm gears by a retrofitted single flank testing machine

INITIALLY PRODUCED BY KLINGELNBERG

Why single flank testing?

Main requirements in worm gear production

- quality (DIN standard)
- defined backlash
- low noise / high lifetime
- influence of assembly precision
- contact pattern
- pitch deviation of worm gear

All these parameters are measured by single flank testing machine PSR500

PSR500 Single flank testing machine

Machine can measure

Standards: DIN 3974, ISO 1328 and free tolerances

Single flank deviations of worm gears

- F Tangential composite deviation
 - Tooth to tooth composite deviation
- $\mathbf{f}_{\mathbf{I}}$ Long wave component of tangential composite deviation
 - Short wave component of tangential composite deviation
 - backlash

Pitch deviations of gear and worm

- Total pitch error
- Adjacent pitch error
- F_p f_{pt} f_u Diff. between adjacent pitches
- -Radial runout

Contact pattern FFT analysis Roundness, eccentricity of gear and worm

Principle of single flank testing

- mounting distance during testing is static
- left and right flanks are tested separately
- two accurate angle encoders
- accuracy up to 1 arc second (5 micro rad)
 ~ 1 μm on radius 200 mm
- results is transmission error
- deviation and tolerances according to DIN 3974 standard

Inspection certificates (header)

Inspection certificates - chart

Measurment evaluation

Allowe value accordin DIN 39	ed s g to 74			Left an fla	d right nk
Standard: DIN 3974	F-facto	r 25%	Allowed	Meas	ured 🕅
Total composite deviation	F'i	[µm]	17.8 3	11.3 2	10.9 2
Single flank composite dev.	f	[µm]	6.7 3	4.4 2	5.6 3
Mean value	ť _{i,m}	[µm]		3.5 1	4.4 2
Max value	f'i,max	[µm]		4.6 2	6.8 4
Long wave component	f'i	[µm]	10.0	7,1	6.3
Short wave component	f' _k	[µm]	5.0	4.2	5.1
Backlash - tangential	j	[mm]			
Ver. 2.6.9.1			Measured values	t of	1999-2013 Geartec.cz

Software interface

Worm Worngear Drawing No. schnecker m 2 118 Drawing No. schnecker m 2 118 Number of teeth z 1 72 Axial modul mx 2118 72 Pressure angle an 1590000* Lead • Left Middle diameter dm 47.764 mm 150.000 ± 2200 Arage of crossbar W 000000000000000000000000000000000000	Name		Measured flank Continuous measuring	⊂Left ⊂ Right ⊂ Both	
Worm position M'z	Worm Wormgear Drawing No. schnecke m 2.118 Rad m 2.118 Number of teeth z 1 72 Axial modul m _x 2.118 Pressure angle α _n 15'0000' Lead Ceft 4 Right Middle diameter d _m 47.764 mm 152.496 mm Centre distance a' 100.000 ± 2.000 mm a'' Worm position M' ₂ 0.000 ± 1.000 mm a''	• 0.000 mm	Measured revs Quantity Production speed Measuring speed Ramp-up angle Measured points Load torque Serial No. Checked by Note Contract No. Machine No.		

Basic object parameters

Complementary object parameters

Measuring software is user-friendly requiring no special or advanced PC knowledge. It can communicate in many languages and runs under Windows.

Tolerances

c~			6	DIN 3974		
	Evaluation		c	[deg]		
	Total composite deviation Single flank composite dev.	F¦ f¦	6	/ 43.0	μm μm	
	Long wave component Short wave component	fi fk		0,0	μm μm	
4	Backlash tolerance	€ ta	angential	C oso +0,070	wá mm	
F	Run-out deviation Total cumulative pitch dev	Fr Fp	6	(15.0 μm) (22,0 μm)	6	(22.0 μm) (34,0 μm)
	Adjacent pitch deviation	lpt fu	6	(9,0 µm)	6	(0,5 µm) (11,0 µm)

Example 1: perfect gears

Worm gear set, gear ratio 1:72

- Tooth to tooth deviation 0.003 mm on right flank
- Left flank is DIN1, right flank is DIN2

Geartec.cz, Czech Republic, 2017

geartec.cz

Example 2: Run-out & nick

Worm gear set, gear ratio 1:41

- Run-out of gear about 0.020mm
- Righ flank has a nick 0.035 mm on tooth no. 15

Geartec.cz, Czech Republic, 2017

geartec.cz

Example 3: Different flanks

Worm gear set, gear ratio 5:61

- Run-out of gear about 0.020 mm
- Worm's left flank has run-out 0.010 mm

Example 4: Backlash

Continuous measuring of backlash

- Chart of backlash for 1 revolution of gear
- Backlash is changing over tooth contact

Example 5: Contact pattern

Digital image of contact pattern

• stored in database with measuring results

Example 6: Run-out and roundness

Measuring of bearings surfaces

- run-out of worm shaft and worm wheel
- elimination of run-out error

Geartec.cz, Czech Republic, 2017

geartec.cz

Example 6: Measuring of run-out

Example 7: FFT analysis and noise

∬geartec.cz

Example 8: Pitch deviation of gear

Example 9: Worm with a pitch error

0,100 ÷ 0,150

[mm]

0,097

-

0,198

© 1999-2013 Geartec.cz

There is not 180 deg. between tooth Nr. 1 and Nr. 2, but 180 deg and cca 99 wsec.

Right flank has wavy surface, cca 5 µm

Ver. 2.6.9.0

Backlash - tangential

Before retrofit

Before retrofit

Complete dismantling

New spindles to clamp gears between centers

Checking accuracy of rotary encoders placed in the table for a worm

New motor unit

New control panel

Completely new wiring box

Before and after

Accessories - Clamping

Two standard fixtures

Special fixtures

Clamping range 0 – 20, 0- 40 mm Intended for users with common accuracy measurement

Clamping range 0 – 40 mm Intended for users with higher accuracy measurements

Accessories – Calibration

Master worm gears (DIN3)

Thank you.

GEARTEC.CZ, s.r.o. Křižíkova 270 250 88 Čelákovice Česká republika

info@geartec.cz

www.geartec.cz

